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Abstract: We consider Bloch oscillations of ultracold atoms stored in
a one-dimensional vertical optical lattice and simultaneously interacting
with a unidirectionally pumped optical ring cavity whose vertical arm is
collinear with the optical lattice. We find that the feedback provided by
the cavity field on the atomic motion synchronizes Bloch oscillations via
a mode-locking mechanism, steering the atoms to the lowest Bloch band.
It also stabilizes Bloch oscillations against noise, and even suppresses
dephasing due to atom-atom interactions. Furthermore, it generates periodic
bursts of light emitted into the counter-propagating cavity mode, providing
a non-destructive monitor of the atomic dynamics. All these features may
be crucial for future improvements of the design of atomic gravimeters
based on recording Bloch oscillations.
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1. Introduction

Continuously operating non-destructive techniques monitoring the atomic motion are usually
desirable in the spectroscopy of ultracold atoms, so that an atomic sample is not destroyed
by the measurement, as it happens, for instance, in standard time-of-flight absorption imaging
methods. A remarkably interesting technique that allows monitoring the response of an atomic
matter wave stored in a one-dimensional periodic lattice to a constant external force is the
observation of Bloch oscillations [1, 2]. Nowadays, the frequency measurement of atomic Bloch
oscillations confined in a stationary vertical light wave has become a standard tool for high
precision measurements of gravitational acceleration [1, 3, 4].

An interesting progression along this line are proposals for a continuous monitoring of Bloch
oscillations avoiding the need for numerous measurements of the atomic velocity after given
evolution times [5, 6, 7, 8]. The idea underlying these proposals is to let the atoms interact
with the vertical arm of an asymmetrically pumped optical ring cavity and monitor the back-
action of the atoms on the phase or amplitude of the cavity light field. The cavity field carries
signatures of Bloch oscillations which can be monitored in a non-destructive way via the light
leaking through a cavity mirror.

In our previous study involving a ring cavity [8], it was shown that there are two distinct
regimes in which the atom-cavity interaction are qualitatively different: for weak collective
coupling, the interaction is dominated by Bloch oscillations whereas for strong collective cou-
pling the interaction is dominated by a collective atomic lasing (CARL) instability [9]. In this
manuscript we perform a detailed analysis of the weak collective coupling regime, demonstrat-
ing its robustness against drifts, dephasing and fluctuations and consequently its potential for
application as an optical monitor of Bloch oscillations.

Bloch oscillations are a faithful signature of gravity only if the atomic motion is perfectly adi-
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Fig. 1. Scheme of a ring cavity consisting of two high-reflecting mirrors (HR) and one out-
put coupler (OC) interacting with a Bose-Einstein condensate (BEC) stored in the vertical
arm of the ring cavity. Only one cavity mode is pumped (Ωp,k0), the counter-propagating
probe mode (α) is populated by backscattering from the atoms. Two lasers (K1,2) crossing
the cavity mode at the location of the BEC under angles ±β/2 generate an optical lattice
whose periodicity is commensurate with the standing wave created by the pump and probe
modes.

abatic. If the optical lattice is subject to amplitude or phase noise or if the lattice is switched on
too fast, the atoms can tunnel to the next higher Bloch band, which leads to drifts and diffusion
of the atomic cloud’s momentum. In this paper, we demonstrate a mode-locking mechanism
provided by the cavity field on the atomic motion. This mode-locking induces synchronization
in Bloch oscillations by assisting adiabatic rapid passage (ARP) between adjacent momentum
states. The enforced adiabaticity self-suppresses the interband tunneling and self-stabilizes the
Bloch oscillations. Moreover, we demonstrate that the mechanism is capable of refocusing the
whole atomic population in the lowest Bloch band after some accidental excitation of higher
bands, e.g., by a sudden non-adiabatic switch-on of the optical standing wave potential or by
technical phase or amplitude noise perturbing the standing wave [10]. It also prevents dephasing
due to interatomic collisions, a common problem in condensates [11, 12].

Finally, our method provides reliable signatures of Bloch oscillations without perturbing
their periodicity. It circumvents the problem of back-action of the probe field onto the Bloch
oscillation dynamics, which is a major concern of the previous proposals [5, 7]. Furthermore,
and in contrast to those proposals, our scheme does not require heterodyne detection since the
light pulses are emitted directly into the reverse cavity mode (see Fig. 1).

2. Set-up

Our experimental set-up consists of an ultracold atomic cloud set in the vertical arm of an
optical ring cavity and confined in an external optical lattice, as depicted in Fig. 1. The ex-
ternal standing wave with lattice constant π/kl traps the atoms in a one-dimensional poten-
tial (h̄W0/2)sin(2klx) along the x axis of the cavity arm, where h̄W0 is the potential depth.
The external periodic potential can be generated by two laser beams sufficiently detuned from
the atomic resonance and intersecting at the location of the atoms under an angle β given by
K sin(β/2) = kl , where K is the wavenumber of the laser beams. Being additionally exposed to
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the gravitational potential mgx, where m is the atomic mass and g is the gravitational accelera-
tion, the atoms undergo Bloch oscillations with frequency νb = mg/2h̄kl [1].

The optical ring cavity is unidirectionally pumped in the upward direction, oppositely to the
gravitational force, by a laser beam with the wavenumber k0 = kl . The atomic motion in such
ring cavities in the absence of the external optical lattice and gravity has been experimentally
shown to act back onto the intracavity light fields and imprint into their phases and amplitudes
detectable signatures [13, 14, 15]. For strong collective coupling this back-action is known as
collective atomic recoil lasing (CARL) [9, 16] and evolves into a spontaneous formation of a
standing wave optical potential. In our configuration with the external optical lattice and gravity,
the role of the cavity is to provide a positive feedback to the Bloch oscillations which become
stabilized via a mode-locking mechanism [8].

The atom-field coupling strength is Ω1 = dE1/h̄, where d is the electric dipole moment of the
atomic transition and E1 the electric field generated by a single photon in the cavity mode. The
Rabi frequency generated by the pump light is Ωp, and ∆ (taken positive for convenience) is
the detuning of the laser frequency from the atomic resonance. Thus, the atom-mediated pump-
probe coupling strength is U0 =Ω1Ωp/4∆. Calling α the complex amplitude of the probe mode
with frequency ω , so |α|2 is the average intracavity photon number, the interference between
pump and probe modes generates a dipolar potential with the depth h̄αU0 along the x axis of
the ring cavity. For now, we neglect the atomic interaction, i.e., we consider a sufficiently dilute
atomic cloud. Then, the self-consistent equations for the atomic wave-function ψ(x, t) and the
probe mode amplitude α(t) are:

ih̄
∂ψ(x, t)

∂ t
= − h̄2

2m
∂ 2ψ(x, t)

∂x2 − ih̄U0

[
α(t)e2ik0x−α

∗(t)e−2ik0x
]

ψ(x, t)

− mgxψ(x, t)+ h̄
W0

2
sin(2k0x)ψ(x, t), (1)

dα(t)
dt

= NU0

∫
|ψ(x, t)|2e−2ik0xd(2k0x)+(iδ −κ)α(t) , (2)

where N is the number of atoms, κ is the cavity linewidth, and δ = ω0−ω is the pump-probe
detuning.

It is more convenient to describe the system’s evolution in an accelerated frame moving with
the velocity gt along the positive direction of the x axis pointing downwards as in Fig. 1. In
this frame, the wave function is transformed as ψ(x, t) = ψ̃(x, t)exp(imgxt/h̄). Substituting
α = α̃−α0, with α0 =W0/4U0, into Eqs. (1) and (2), we obtain:

∂ψ̃

∂ t
=

ih̄
2m

(
∂

∂x
+

imgt
h̄

)2

ψ̃−U0

(
α̃e2ik0x− α̃

∗e−2ik0x
)

ψ̃, (3)

dα̃

dt
= NU0

∫
|ψ̃|2e−2ik0xd(2k0x)+(iδ −κ)(α̃−α0) . (4)

It should be noted that Eq. (4) shows that the impact of the externally imposed standing wave
can be accounted for as an additional laser beam pumping the probe mode at the rate α0κ .

If the size of the atomic sample is much larger than the radiation wavelength and its density
is almost uniform, we may expand the atomic wave function ψ̃(x, t) into plane waves with
periodicity π/k0,

ψ̃(x, t) =
1√
2π

∑
n

Cn(t)e2ink0x, (5)

where |Cn|2 is the probability of finding the atoms in the nth momentum state pn = n(2h̄k0).
Note that the wavefunction is expanded in the momentum state |pn〉 [2], rather than the
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often-used Bloch states |nb,q〉 with quasimomentum q and the band index nb [17]. Intro-
ducing the Bloch oscillation frequency νb = mg/(2h̄k0) and the single-photon recoil frequency
ωr = h̄k2

0/2m, Eqs. (3) and (4) are transformed into:

dCn

dt
= −4iωr(n+νbt)2Cn +U0 (α̃

∗Cn+1− α̃Cn−1) , (6)

dα̃

dt
= U0N ∑

n
C∗n−1Cn +(iδ −κ)(α̃−α0) . (7)

These are our working equations describing the coupled atom-ring cavity dynamics.

3. Bloch oscillation dynamics without cavity

We first disregard the back-action of the atoms onto the cavity field by setting α = 0, i.e.,
formally assuming U0α̃ = W0/4 in Eq. (6). Thus, Eq. (6) can then be interpreted in the usual
Bloch oscillation picture [2]: In the accelerated frame, the frequencies of the two counter-
propagating light fields are Doppler-shifted, and gravity manifests itself as a linear frequency
chirp in the first term on the right-hand side of Eq. (6). As time goes on, a resonance is crossed at
t =−nτb, where τb = 1/νb is the Bloch period, and the crossing is periodically repeated at each
n =−1,−2, . . .. At each crossing the atoms get an extra momentum 2h̄k0, while transferring a
photon from one beam of the optical lattice to the other one. Such momentum transfer causes an
upward force which compensates for gravity in the laboratory frame. In an equivalent picture,
the accelerated atomic matter wave decreases its de Broglie wavelength until, at the edges of
the Brillouin zone, it becomes commensurate with the optical lattice and is Bragg-reflected.
The momentum transfer is efficient in the adiabatic rapid passage (ARP) regime characterized
by the conditions 2(νb/ωr)� (W0/4ωr)

2 � 16 [2]. The first condition can then be read as
the force driving the atoms to perform Bloch oscillations should be weak enough to prevent
interband transitions, which ensures the adiabaticity of the process. The other condition requires
the optical lattice to be sufficiently weak, so that the dynamics involves only two adjacent
momentum states at a time and the transfer between the two is successful.

We discuss the Bloch oscillation dynamics in an ultracold cloud of 87Rb atoms interacting
with the light at λ0 = 780 nm (D2-line), with recoil frequency ωr = (2π)3.75 kHz and Bloch
oscillation frequency νb = 0.035ωr. We assume an atom number N = 2 ·104, κ = 160ωr, δ = 0,
U0 = 0.04ωr and W0 = 3.2ωr, which corresponds to |α0|2 = 400 photons. These parameters
are perfectly realizable in state-of-the-art experiments. Neglecting the influence of the cavity,
we numerically integrate Eq. (6) keeping α̃ = α0 constant. The curves in Fig. 2(a) show the
evolution of the average atomic momentum in the laboratory frame, 〈p〉lab = 〈p〉+ νbt with
〈p〉 = ∑n n|Cn|2, as a function of normalized time νbt. We observe that, in the absence of the
cavity, an abrupt switch-on of the optical lattice leads to a steady drift of the atomic momentum
(dash-dotted red curve). On the other hand, if the lattice is switched on adiabatically over a time
period of 10/ωr = 420 µs, no drift is observed (dashed black curve). The reason for the drift to
happen is that any non-adiabatic process violates the ARP assumption, 2(νb/ωr)� (W0/4ωr)

2

[2], and reduces the efficiency of the momentum transfer upon Bragg-reflection, since a part of
the matter wave tunnels into the next higher Bloch band where it continues being accelerated.
In the case of an abrupt switch-on, the atomic population is initially dispersed over several
momentum states, not all of which participate in the Bloch oscillations. As a consequence, the
average momentum change at each step is slightly less than 2h̄k0, the Bragg reflection does
not fully compensate for gravity, and the cloud’s center-of-mass momentum steadily increases
in time. If, on the other hand, the lattice is turned on adiabatically, only the p = 0 state is
initially populated and all atoms undergo Bloch oscillations. However, even with all atoms
initially sitting in the same momentum state, drifts may occur. If the chirping rate is too fast
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Fig. 2. (a): Average atomic momentum in the laboratory frame as a function of scaled time
νbt for a sudden switch-on of the optical lattice without (red dash-dotted) and with (plain
blue) the cavity, compared to an adiabatic switch-on without the cavity (dashed black); (b):
average number of photons |α|2 in the cavity field; (c): phase of the cavity mode α for a
sudden switch-on of the optical lattice in the presence of the cavity. The parameters of the
simulations are provided in the body of the text.

(which may happen, for example, if the lattice is too shallow), the matter wave diffuses over
various bands, which degrades the oscillations on the long term. This is illustrated in Fig. 3(a)
showing, for a slightly lower lattice depth W0 = 1.68ωr, the time-evolution of the momentum
populations |Cn|2. It is clearly visible that, despite an adiabatic switch-on of the optical lattice,
the population of the momentum state confined within the Brillouin zone steadily decreases.

4. Mode-locking with ring cavity

The situation changes significantly in the presence of the ring cavity. In this case, the matter
wave may not only scatter light between the external optical lattice beams, but it also cooper-
atively scatters photons from the pumped cavity mode into the reverse mode α . In the regime
of interest, the contribution of this scattered field to the optical lattice strength remains small,
such that the CARL instability does not trigger.

The simulations are now performed letting the field α̃ evolve dynamically according to
Eq. (7). The blue curve in Fig. 2(a) shows how, after the optical lattice is turned on non-
adiabatically, the population is efficiently restored into the Brillouin zone, after a transient of
approximately three Bloch periods. Then, the momentum drift is canceled and the Bloch oscil-
lations persist for long times. The radiation field reaches, after the transient, a stationary regime
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Fig. 3. Time evolution of the momentum populations |Cn|2 for (a): adiabatic switch-on of
the lattice without the cavity, and (b): abrupt switch-on of the lattice in the presence of the
cavity. The same parameters as in Fig. 2 are used, except for the lattice depth W0 = 1.68ωr
and N = 3 · 104. The different colors chosen for adjacent momentum states are meant to
facilitate their visual distinction.

characterized by periodic bursts of light at each Bloch oscillation. The intracavity photon num-
ber evolution |α|2 of the probe mode is shown in Fig. 2(b). The average photon number |α|2' 5
corresponds, for the chosen value of κ , to a photon flux of∼ 4600 s−1 outside the cavity behind
the output coupler, i.e.,∼ 35 photons/Bloch oscillation. Hence, the light bursts appear to be de-
tectable via a photon counter, thus providing a reliable and stable monitor of the atomic motion.
The phase φ of the field α = α̃−α0 of the probe mode, shown in Fig. 2(c), also stabilizes after
the transients to a constant value only slightly perturbed at each Bloch oscillation.

The observed cavity-induced stabilization can be explained by the fact that the cavity field
provides a feedback to the atomic evolution, such that the Bloch oscillations are stabilized via
a process similar to the mode locking in Q-switched lasers. The feedback assists the adiabatic
passage helping to complete the momentum transfer at each period τb. Indeed, Fig. 3(b) shows
that a complete momentum population (i.e., |Cn|2 = 1) is reached after each momentum transfer.
While adiabatic switch-on of the lattice is useful in the initial phase, the feedback provided by
the cavity stabilizes the Bloch oscillations for indefinite times.

5. Impact of collisions

Atom-atom interactions may lead to a collisional dephasing that limits the observation of Bloch
oscillations to a few cycles for typical atomic densities in a BEC [11]. Here we demonstrate
that the optical ring cavity added to the system stabilizes the Bloch oscillations, maintaining the
atoms within the first Brillouin zone. Interatomic interactions in our model can be accounted
for as the additional cubic term 2πβ |ψ|2ψ on the right-hand side of Eq. (1), describing bi-
nary collisions in the mean-field s-wave approximation, where β = 4h̄k0asN/mΣ, as is the
interatomic scattering length and Σ the condensate cross-section perpendicular to the optical
axis [18]. Differently from dipole-dipole short-range interactions induced by far off-resonance
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Fig. 4. Impact of collisions on the evolution of the populations of the momentum states
|Cn|2 (a) without the cavity and (b) in the presence of the cavity. The other parameters are
the same as in Fig. 2 with an adiabatic rise of the optical lattice in both cases and β = ωr.
(c) Average momentum for the same conditions as in (a). The assumption made for the
interaction strengths, β ' ωr, corresponds to typical experimental situations, as = 110aB
for 87Rb, N = 2×104 and Σ' 300 µm 2.

lasers [19, 20, 21], the collision term here leads to a purely repulsive term, which tends to de-
stroy the coherence of the process. In Eq. (6), it contributes to the dynamics of state Cn by a
term −iβ ∑k,l CkClC∗k+l−n. We note that since we focused on a periodic system, and thus on
momentum states congruent with the photon momentum 2nh̄k0, the collision terms projected
on that momentum basis only allows exchange of atoms between these specific states.

Our simulations reveal that, without the ring cavity, the atom-atom interactions drive the
atoms into other momentum states, which decreases the atomic population participating in the
Bloch oscillations [see Fig. 4(a)]. Consequently, the average momentum of the atomic system
starts drifting [red curve in Fig. 4(c)]. The presence of the cavity maintains the atoms within a
single momentum state, preserves the coherence of the system and stabilizes the Bloch oscilla-
tions [Fig. 4(b) and black curve in Fig. 4(c)].

6. Clearing excited Bloch bands

The mode-locking of the Bloch oscillations is accompanied by a depopulation of excited Bloch
bands. To show this, we simulate the Bloch oscillation dynamics via Eqs. (6) and (7) with a
distributed initial momentum state population. Fig. 5 compares the time-evolution of the pop-
ulation of the momentum states |Cn(t)|2 for the cases where stable oscillations are expected.
Without the ring cavity but with adiabatic switch-on of the optical lattice [Fig. 5(a)], the ini-
tial distribution of the momentum states remains unchanged. Only the atoms initially being in
the momentum state n = 0 undergo Bloch oscillations within the lowest Bloch band. In the
presence of the ring cavity [Fig. 5(b)], after some wild transients, the whole atomic population
condenses to a single momentum state.
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Fig. 5. Evolution of the populations of the momentum states |Cn|2 when the atoms are
initially distributed over several states (C2

0 = 70%, C2
−1 = C2

+1 = 15%) in the case of (a)
adiabatic switch-on of the lattice without the cavity, (b) abrupt switch-on of the lattice in
the presence of the cavity. The other parameters are the same as in Fig.2.

7. Dephasing induced by phase-fluctuations of the lattice

Dephasing due to phase kicks of the standing wave optical potential can be neutralized by
the cavity as well. The stability of the cavity set-up against mechanical noise is tested using
random phase kicks on the optical lattice that accounts, for example, for mechanical/acoustic
noise on the lattice mirrors. The Bloch oscillations appear to be very sensitive to such noise in
the absence of the cavity, as these random kicks in the lattice phase drive many atoms to other
momentum states (dashed red curve in Fig. 6). The presence of the cavity feedback makes the
dynamics robust against this phase noise (solid black curve in Fig. 6), which can be understood
by the fact that the radiation wave generated by the atoms remains in phase with them, until it
synchronizes again with the optical lattice. Hence, the cavity smooths the change of phase of
the wave. Notice that if the phase kicks are applied to the cavity wave, the optical lattice would,
in turn, enforce synchronization and greatly reduce the noise.

It should be noted that the mode-locking Bloch oscillation mechanism makes it unnecessary
to phase-lock the cavity and lattice waves. In an experiment this should be realized with two
independent servo loops to keep the pump beam resonant to the cavity mode and the lattice
beams commensurate at the same time. The absence of commensurable ratio between the two
fields could give rise to spurious oscillations which are not due to gravity or phase noise, af-
fecting the precision of the measurement of νb. But even if the cavity and the external lattice
are not phase-locked, the spontaneous mode-locking induced by the cavity backaction on the
atomic motion will naturally solve this problem.

Furthermore, the externally imposed standing wave (see Fig. 1) could also be generated by
an additional laser beam having the same frequency and phase as the pump beam injected into
the probe mode of the ring cavity. However, this light field will also induce backaction dynam-
ics, which makes the whole problem more complex. Finally, we note that another dephasing
mechanism may arise, for instance, due to the impact of a residual confinement potential, as
discussed in [12] or due to a non-homogeneous density of the atomic samples [22]. However,
these effects are difficult to include into the present model, since they must be considered as an
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Fig. 6. Dephasing induced by phase-fluctuations of the lattice potential. Simulations are re-
alized with the adiabatic rise of the optical lattice in both cases with (solid black) and with-
out the cavity (dashed red) and three sequential phase kicks at times νbt = 3.6, 11.9, 22.3,
with the respective amplitudes δφ = 0.16π, 0.37π, 0.46π .

inhomogeneous broadening. In any case, in order to minimize the impact of a residual trapping
potential, it is important to prevent the atoms from traveling along the lattice. This is guaran-
teed by our mode-locking scheme which cancels the center-of-mass momentum as shown, for
example, in Fig. 6.

8. Impact of unbalanced radiation pressure forces

Up until now we have neglected the radiation pressure force (RPF) exerted on the atoms by the
pump and probe light beams in the unidirectionally pumped ring cavity. Generally, if the pump
laser is tuned far from the atomic resonance (∆� Ωp,Γ), the RPF is small. Nevertheless, the
RPF may significantly affect the Bloch oscillation frequency νb and limit its application as a
gravimeter. The RPF adds the term FRP(t)xψ(x, t) to the right-hand side of Eq. (1), where the
RPF is given by

FRP(t) =
h̄k0Γ

4∆2

(
Ω

2
p−Ω

2
1|α(t)|2

)
. (8)

After moving into the accelerated frame of reference, the atomic wave function is modified
according to

ψ(x, t) = ψ̃(x, t)exp
(

imgxt
h̄
− i

h̄
x
∫ t

0
FRP(t ′)dt ′

)
. (9)

It is straightforward to demonstrate that Eq. (6) takes in the presence of the RPF the following
form:

dCn

dt
= −4iωr

[
n+νbt− Γ

8∆2

(
Ω

2
pt +Ω

2
1

∫ t

0
|α(t ′)|2dt ′

)]2

Cn

+ U0 (α̃
∗Cn+1− α̃Cn−1) . (10)

The additional term corresponding to the RPF occurs in the description and it certainly affects
the Bloch oscillation frequency. As a result, the average atomic momentum (in 2h̄k0 units) in
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the laboratory frame becomes modified as well:

〈p〉lab = ∑
n

n|Cn|2 +νbt− Γ

8∆2

(
Ω

2
pt +Ω

2
1

∫ t

0
|α(t ′)|2dt ′

)
. (11)

Indeed, for the chosen set of parameters the RPF constant term ΓΩ2
p/8∆2 = 0.05νb induces

the maximum modification of 5% of the Bloch oscillation frequency, which is quite large to
be disregarded. In order to reduce the RPF effect, the additionally gained RPF term must be
very small compared to the actual Bloch oscillation frequency νb, which requires at least ∆ ≥
1.5 · 107ωr or ∆ ≥ 35GHz. Also, the RPF effect is insignificant when Ωp is small, i.e. the
incident pump laser beam is rather weak. These conditions can be reached by varying, for
instance, the pump-probe coupling strength U0, photon number |α|2 and the number of atoms
N, while keeping the rest of the parameters unchanged. For example, for κ = 16ωr, N = 2×105,
U0 = 0.002ωr and α0 = 20, the alteration of the Bloch oscillation frequency is reduced to
∼ 104νb.

9. Two-state model

A mathematical description of the Bloch oscillations has been carried out extensively in the
literature [23], and it is not necessary to review it here. However, it is worth to demonstrate how
our model, adopting the momentum state picture (not to be confused with the quasimomentum
picture), describes the Bloch oscillations in the adiabatic rapid passage (ARP) approximation.

For sufficiently weak optical lattices, W0/ωr � 16, Bragg reflection only couples adjacent
momentum states [2], say n and n−1, so that |Cn|2 + |Cn−1|2 = 1. In this limit, Eqs. (6) and (7)
reduce to a simple set of Maxwell-Bloch equations:

dS
dt

= −iΛnS+U0α̃W , (12)

dW
dt

= −2U0 (α̃S∗+ α̃
∗S) , (13)

dα̃

dt
= U0NS+(iδ −κ)(α̃−α0) , (14)

where Λn = (ωr/4)(2n− 1+ 2νbt) is the time-dependent detuning, S = C∗n−1Cn is the inter-
ference term, and W = |Cn|2−|Cn−1|2 is the population difference. These equations admit the
constant of motion 4|S|2 +W 2 = 1. In the bad cavity regime, κ � α0U0 and for δ = 0, the
probe field from Eq. (14) is approximated by α̃ ≈ α0 +U0NS/κ .

In order to compare the results of the numerical solutions of Eqs. (6)-(7) with those given by
the ARP approximation, we make the adiabatic following assumption that both S and W vary
slowly in time. The condition |dS/dt| � |ΛnS| and the assumption α̃ ≈ α0 (i.e., neglecting
the cavity feedback) allow S to be expressed in terms of the population difference W as S =
−iU0α0W/Λn. Then, using the constant of motion 4|S|2 +W 2 = 1, one finds:

W =
Λn√

4U2
0 α2

0 +Λ2
n

, S =−i
U0α0√

4U2
0 α2

0 +Λ2
n

. (15)

From these, one can finally express the average momentum (in 2h̄k0 units) in the accelerated
frame as 〈p〉 = n+(W −1)/2. The results obtained using the ARP approximation correspond
to the red curves in Fig. 7, while the results of the numerical solution of Eqs. (6-7) are shown in
blue. It is seen that ARP describes the behavior of the system well after a transient, and it allows
to interpret Bloch oscillations as a succession of transitions between two adjacent momentum
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Fig. 7. Comparison of the average atomic momentum 〈p〉 given in units of 2h̄k0 obtained
from the ARP solution (red) of Eq. (15) and numerical solution (blue) of Eqs. (6) and (7)
in the accelerated frame. The parameters are the same as in Fig. 2.

states in the accelerated frame [2]. Then, the feedback provided by the cavity and inducing
mode-locking in this coherent process takes origin from the last term of Eq. (14). However, a
more complete description turns out to be very challenging, since the mode-locking mechanism
actually involves more than two momentum states at each transition. For this reason, a more
precise study of the oscillations had to rely on the numerical integration of Eqs. (6)-(7).

10. Conclusion

The atom-field coupling in a unidirectionally pumped ring cavity provides a feedback mech-
anism of the atomic motion onto the amplitude and phase of the counter-propagating light
field. We found that the cavity forces the atoms to execute synchronous Bloch oscillations even
in presence of adverse effects, such as a non-adiabatic rise of the optical lattice or dephasing
mechanisms due to atom-atom interaction or phase fluctuations. The feedback-generated mode-
locking of the atomic motion to the Bloch oscillations frequency provides several important
practical advantages. First of all, the atoms are not accelerated, but stay within the first Bloch
band, which prevents long-term drifts. Moreover, robust light bursts observed in the probe mode
provide a signature allowing the Bloch oscillations to be monitored non-destructively for long
times. These features are interesting for a potential use in atomic gravimeters. In most of the
existing atomic gravimeters the test mass is raised before being dropped into the gravitational
field. The process is laborious, since a new atomic sample must be prepared for exposure to
gravity for a chosen evolution time, and it suffers from uncertainties and fluctuations. More-
over, it requires a finite amount of time, which slows down the repetition rate and limits both
the integration time and the gravimeter’s precision. Our scheme provides a reliable and techni-
cally feasible tool to overcome these problems.

More generally, the role of a unidirectionally pumped ring cavity may be envisaged as a
way to merge different Bose-Einstein condensates with independent phases and different mo-
menta [24], by forcing them into synchronous Bloch oscillations. In our case, the driving force
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is provided by the mode-locking mechanism emerging from the coherent interaction of the
atoms with the two counter-propagating modes of a ring cavity.
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